INITIAL SYSTEM SETUP

Step 1: Confirm that all system drains are shut and that the system is free of leaks.

Step 2: Confirm that the system has been depressurized. The gauges should indicate zero pressure.

Step 3: Confirm that the alarm test ball valve (Item 10b) of the priming manifold assembly (Item 10) is closed.

Step 4: Open the charge line valve (Item 10a) of the priming manifold assembly (Item 10). Allow water to flow through the auto drain tube.

Step 5: Confirm that the solenoid valve (Item 7) is closed (de-energized).

Step 6: Confirm that water is not flowing through the solenoid valve (Item 7).

Step 7: Open the manual pull station (Item 8) valve to bleed off any air that is present, then close the manual pull station valve. Verify that the charge line pressure (Item 9) is equal to the supply pressure, and verify that the auto drain is set by pulling up on the auto drain sleeve (Item 10c) of the priming manifold assembly (Item 10).

Step 8: Open the water supply main drain valve (Item 5).

Step 9: Open the water supply main control valve (Item 3) slowly until water flows steadily from the open water supply main drain valve (Item 5).

Step 10: Close the water supply main drain valve (Item 5) when a steady flow of water occurs.

Step 11: Open the water supply main control valve (Item 3) fully.

Step 12: Confirm that all valves are in their normal operating positions (refer to the table below).

NORMAL OPERATING POSITIONS FOR VALVES

<table>
<thead>
<tr>
<th>Valve</th>
<th>Normal Operating Position</th>
<th>Valve</th>
<th>Normal Operating Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Supply Main Control Valve</td>
<td>Closed</td>
<td>Alarm Test Ball Valve of the Priming Manifold Assembly</td>
<td>Closed</td>
</tr>
<tr>
<td>Water Supply Main Drain Valve</td>
<td>Closed</td>
<td>Alarm Line Monitoring Ball Valve</td>
<td>Open</td>
</tr>
<tr>
<td>Auto Drain Sleeve</td>
<td>Closed</td>
<td>Alarm Water Motor Alarm Shut-Off Valve</td>
<td>Open</td>
</tr>
<tr>
<td>Charge Line Ball Valve of the Priming Manifold Assembly</td>
<td>Open</td>
<td>Alarm Line Monitoring Limit Switch Assembly</td>
<td>Open</td>
</tr>
<tr>
<td>Charge Line Pressure Gauge/Gauge Valve Assembly</td>
<td></td>
<td>Alarm Pressure Switch</td>
<td></td>
</tr>
<tr>
<td>Charge Line Ball Valve</td>
<td></td>
<td>Alarm Line Monitoring Limit Switch Assembly</td>
<td></td>
</tr>
<tr>
<td>24 VDC Normally-Closed Solenoid Valve</td>
<td></td>
<td>Alarm Line Monitoring Ball Valve</td>
<td></td>
</tr>
</tbody>
</table>

WATER FLOW ALARM TEST

Perform the water flow alarm test on a frequency required by the current NFPA-25 code. The authority having jurisdiction in the area may require these tests on a more frequent basis. Verify these requirements by contacting the authority having jurisdiction in the affected area.

1. Notify the authority having jurisdiction, remote station alarm monitors, and those in the affected area that the water flow alarm test will be performed.
2. Open the water supply main drain valve (Item 5) fully to flush the water supply of any contaminants.
3. Close the water supply main drain valve (Item 5).
4. Open the alarm test ball valve (Item 10b) of the priming manifold assembly (Item 10). Confirm that mechanical and electrical alarms are activated and that remote monitoring stations, if provided, receive an alarm signal.
5. Close the alarm test ball valve (Item 10b) of the priming manifold assembly (Item 10) after verifying proper operation of all alarms.
6. Push in the ball drip plunger (Item 11a) on the alarm manifold assembly (Item 11) to verify that there is no pressure in the alarm line.
7. Verify that all alarms stopped sounding, that the alarm line drained properly, and that remote station alarms reset properly.
8. Confirm that the ball drip on the alarm manifold assembly (Item 11) is not leaking water or air.
9. Provide test results to the authority having jurisdiction, if required.