THERE IS WORTHWHILE TO LEARN THE SYSTEM IN SERVICE FOR PERFORMING WATER FLOW ALARM TESTS.

AN EXPERIENCED, TRAINED INSTALLER SHALL READ AND UNDERSTAND THE FULL CONTENTS OF THE INSTALLATION, MAINTENANCE, AND TESTING MANUAL AND ALL WARNING MESSAGES BEFORE ATTEMPTING TO PLACE THE SYSTEM INTO SERVICE.

INITIAL SYSTEM SETUP

Before proceeding with initial system setup, verify that the following steps have been completed:
- Verify that the system air feed piping is connected to the location indicated on the trim drawing.
- Verify that an approved control panel is installed for proper system operation.

THE FOLLOWING INSTRUCTIONS APPLY TO SOLENOIDS THAT ARE CLOSED (DE-ENERGIZED). IF THE SOLENOIDS ARE OPEN (ENERGIZED), RESET THE CONTROL PANEL BEFORE ATTEMPTING TO PLACE THE SYSTEM INTO SERVICE.

Step 1:
- Confirm that all system drains are shut and that the system is free of leaks.

Step 2:
- Confirm that the system has been depressurized. The gauges should indicate zero pressure.

Step 2a:
- If a Series 746-LPA Dry Accelerator (Item 8) is installed, confirm that the isolation ball valve (Item 8b) is closed.

Step 2b:
- If a Series 746-LPA Dry Accelerator (Item 8) is installed (Item 8), open the 1/4-turn vent ball valve (Item 8a).

Step 3:
- Confirm that the alarm test ball valve (Item 15b) of the priming manifold assembly (Item 15) is closed.

Step 4:
- Charge the system with air by turning on the compressor or by opening the fast-fill ball valve (Item 21b) on the Victaulic Air Maintenance Trim Assembly (AMTA – Item 21). Change the system to 13 psi/90 kPa/0.9 Bar minimum.

Step 5:
- When the system reaches approximately 10 psi/69 kPa/0.7 Bar, and no additional moisture is being released from the Auto Vent, pull up on the Auto Vent Sleeve (Item 11a) of the Series 767 Electric/Pneumatic Actuator (Item 11). NOTE: The Auto Vent Screw should seal and remain in the set ("UP") position.

Step 6:
- When system air pressure is established, close the fast-fill ball valve (Item 21b) on the AMTA (Item 21).

Step 7:
- Open the slow-fill ball valve (Item 21a) on the AMTA (Item 21). NOTE: Failure to leave the slow-fill ball valve (Item 21a) open may allow system pressure to drop, resulting in valve operation in the event of a system leak.

Step 8:
- Open the charge line ball valve (Item 16a) of the priming manifold assembly (Item 15). Allow water to flow through the auto drain tube.

Step 9:
- Open the manual pull station (Item 14) valve to bleed off any air that is present, then close the manual pull station valve. Verify that the charge line pressure (Item 16) and Series 767 upper chamber pressure (Item 12) are equal to the supply pressure and that the auto drain is set by pulling up on the auto drain sleeve (Item 15c) of the priming manifold assembly (Item 15). Verify that no water is draining from the Series 767 Electric/ Pneumatic Actuator (Item 11).

Step 9a:
- If a Series 746-LPA Dry Accelerator (Item 8) is installed, close the 1/4-turn vent ball valve (Item 8a).

Step 9b:
- If a Series 746-LPA Dry Accelerator (Item 8) is installed, open the isolation ball valve (Item 8b). This will set the accelerator.

Step 10:
- Open the water supply main drain valve (Item 5).

Step 11:
- Close the water supply main control valve (Item 3) slowly until water flows steadily from the open water supply main drain valve (Item 5).

Step 12:
- Close the water supply main drain valve (Item 5) when a steady flow of water occurs.

Step 13:
- Open the water supply main control valve (Item 3) fully.

Step 14:
- Confirm that all valves are in their normal operating positions (refer to the table below).

NORMAL OPERATING POSITIONS FOR VALVES

<table>
<thead>
<tr>
<th>Valve</th>
<th>Normal Operating Position</th>
<th>Normal Operating Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Supply Main Control Valve</td>
<td>Open</td>
<td>Slow-Fill Ball Valve of the Victaulic AMTA (if applicable)</td>
</tr>
<tr>
<td>Water Supply Main Drain Valve</td>
<td>Closed</td>
<td>Fast-Fill Ball Valve of the Victaulic AMTA (if applicable)</td>
</tr>
<tr>
<td>System Main Drain Valve</td>
<td>Closed</td>
<td>Isolation Ball Valve for Series 746-LPA Dry Accelerator (if applicable)</td>
</tr>
<tr>
<td>Charge Line Ball Valve of the Priming Manifold Assembly</td>
<td>Open</td>
<td>Alarm Line Monitoring Valve</td>
</tr>
<tr>
<td>Isolation Ball Valve of the Priming Manifold Assembly</td>
<td>Open</td>
<td>Slow-Fill Ball Valve of the Victaulic AMTA (if applicable)</td>
</tr>
</tbody>
</table>

REQUIRED WATER FLOW ALARM TEST

Refer to NFPA 25, FM Datasheets, or any applicable local requirements to perform water flow alarm tests. The authority having jurisdiction in the area may require these inspections on a more frequent basis. Verify these requirements by contacting the authority having jurisdiction in the affected area.

1. Notify the authority having jurisdiction, remote station alarm monitors, and those in the affected area that the water flow alarm test will be performed.
2. Open the water supply main drain valve (Item 5) fully to flush the water supply of any contaminants.
3. Close the water supply main drain valve (Item 5).
4. Open the alarm test ball valve (Item 15b) of the priming manifold assembly (Item 15). Confirm that mechanical and electrical alarms are activated and that remote monitoring stations, if provided, receive an alarm signal.
5. Close the alarm test ball valve (Item 15b) of the priming manifold assembly (Item 15) after verifying proper operation of all alarms.
6. Push in the ball drip plunger (Item 18a) on the alarm manifold assembly (Item 18) to verify that there is no pressure in the alarm line.
7. Verify that all alarms stopped sounding, that the alarm line drained properly, and that remote station alarms reset properly.
8. Confirm that the ball drip on the alarm manifold assembly (Item 18) is not leaking water or air.
9. Provide test results to the authority having jurisdiction, if required.

I-769N.WC.PST I-14410 REV.A 12/2019

NOTICE